DFA state minimization

(LECTURE 7)

Introduction

- Inaccessible states
- How to find all accessible states
- Minimization process

Motivations

Problems:

- 1. Given a DFA M with k states, is it possible to find an equivalent DFA M' (I.e., L(M) = L(M')) with state number fewer than k?
- 2. Given a regular language A, how to find a machine with minimum number of states?

Ex: $A = L((a+b)^*aba(a+b)^*)$ can be accepted by the following NFA:

By applying the subset construction, we can construct a DFA M2 with 2⁴=16 states,

of which only 6 are accessible from the initial state {s}.

Inaccessible states

 A state p ∈ Q is said to be inaccessible (or unreachable) [from the initial state] if there exists no string x in S* s.t.

$$D(s,x) = p \text{ (I.e., } p \notin \{q \mid \exists x \in S^*, D(s,x) = q \}. \text{)}$$

Theorem: Removing inaccessible states from a machine M does not affect the language it accepts.

Pf: $M = \langle Q, S, d, s, F \rangle$: a DFA; p: an inaccessible state Let $M' = \langle Q \setminus \{p\}, S, 'qs, F \setminus \{p\} \rangle$ be the DFA M with p removed. Where $d': (Q \setminus \{p\}) \times S \rightarrow Q \setminus \{p\}$ is defined by d'(q,a) = r if d(q,a) = r and $q, r \in Q \setminus \{p\}$.

For M and M' it can be proved by induction on x that for all x in S^* , D (s,x) = D'(s,x). Hence for all $x \in S^*$, $x \in L(M)$ iff D $(s,x) = q \in F$ iff D' $(s,x) = q \in F \setminus \{p\}$ iff $x \in L(M')$.

Inaccessible states are redundant

- M: any DFA with n inaccessible states p₁,p₂,...,p_n.
- Let $M_1, M_2, ..., M_{n+1}$ are DFAs s.t. DFA M_{i+1} is constructed from M_i by removing p_i from M_{i-1} l.e.,
- M -rm(p_1)-> M_1 -rm(p_2)-> M_2 ... M_n -rm(p_n)-> M_n By previous lemma: L(M) = L(M_1) = ...=L(M_n) and M_n has no inaccessible states.
- Conclusion: Removing all inaccessible sates simultaneously from a DFA will not affect the language it accepts.
- In fact the conclusion holds for all NFAs we well.
 Pf: left as an exercise.
- Problem: Given a DFA (or NFA), how to find all inaccessible states?

How to find all accessible states

A state is said to be accessible if it is not inaccessible.

```
Note: the set of accessible states A(M) of a NFA M is \{q \mid x \in S^*, q \in D(S,x) \} and hence can be defined by induction.
```

 Let A_k be the set of states accessible from initial states of M by at most k steps of transitions.

```
I.e., A_k = \{q \mid x \in S^* \text{ with } |x| \le k \text{ and } q \in D(S,x) \}
```

- What is the relationship b/t A(M) and A_ks?
 - o sol: $A(M) = U_{k \ge 0} A_k$. Moreover $A_k \subseteq A_{k+1}$
- What is A₀ and the relationship b/t A_k and A_{k+1}?

Formal definition: M=<Q,S,d, S,F>: any NFA.

- o Basis: Every start state q ∈ S is accessible. $(A_0 ⊆ A(M))$
- o Induction: If q is accessible and p in d(q,a) for some $a \in S$, then p is accessible.

```
(A_{k+1}=A_k \cup \{p \mid p \in d(q,a) \text{ for some } q \in A_k \text{ and } a \in S.)
```

An algorithm to find all accessible states:

```
• REACH(M) { // M = <Q,S,d, S,F>
1. A = S;
          //A = A_0
2. B = D (A) - A; // B = A_1 - A_0
3. For k = 0 to |Q| do \{ // A = A_k ; B = A_{K+1} - A_k \}
4. A = A \cup B; // A = A_{K+1}
        B = D(B) - A; // B = D(B) - A = D(A_{K+1} - A_k) - A_{K+1} = A_{K+2} - A_{k+1};
        if B = {} then break };
5. Return(A) }
Function D(S) { //=U_{p \in S, a \in S}, q \in d(p,a)
1. D = \{\};
2. For each q in Q do
   for each a in S do
    D = D U d(q,a);
3. Return(D) }
```

Minimization process

- Minimization process for a DFA:
 - 1. Remove all inaccessible states
 - 2. Merge all equivalent states
- What does it mean that two states are equivalent?
 - o both have the same observable behaviors .i.e.,
 - o there is no way to distinguish their difference.
- Definition: we say state p and q are distinguishable if there exists a string x∈S* s.t. (D (p,x)∈F ⇔ D (q,x) ∉ F).
 - o If there is no such string, i.e. $\forall x \in S^*(D(p,x) \in F \Leftrightarrow D(q,x) \in F)$, we say p and q are equivalent (or indistinguishable).
- Example[13.2]: (next slide)
 - state 3 and 4 are equivalent.
 - States 1 and 2 are equivalent.
- Equivalents sates can be merged to form a simpler machine.

Example 13.2:

Example 13.2: Witness for states that are distinguishable

- 1. States b/t {0,3,4} and {1,2,5} can be distinguishsed by the empt y string e.
- 2. States b/t {1,2} and {5} can be distinguished by a or b.
- 3. States b/t {0} and {3,4} can be distinguished by aa,ab, ba or bb.
- 4. There is no way to distinguish b/t 1 and 2, and b/t 3 and 4.

Quotient Construction

- M=(Q, S, ,\ds, F): a DFA.
- ≈ : a relation on Q defined by:

```
p \approx q \iff \forall x \in S^* D(p,x) \in F \text{ iff } D(q,x) \in F
```

- Property: ≈ is an equivalence (i.e., reflexive, symmetric and transitive) relation.
- Hence it partitions Q into equivalence classes :
 - o [p] = $def \{q \in Q \mid p \approx q\} \text{ for } p \in Q.$
 - \circ Q/≈ =_{def} {[p] | p ∈ Q} is the quotient set.
 - Every p ∈ Q belongs to exactly one class (which is [p])
 - o p ≈ q iff [p]=[q] //why? since p ≈ q implies p≈r iff q≈r.
- Ex: From Ex 13.2, we have 0, 1 ≈ 2, 3 ≈ 4, 5.
 - \circ => [0] = {0}, [1] = {1,2}, [2]={1,2}, [3]={3,4},[4]={3,4} and
 - \circ [5] = {5}. As a result, [1] = [2] = {1,2}, [3]=[4]= {3,4} and
 - $Q/\approx = \{ \{0\}, \{1,2\}, \{3,4\}, \{5\} \} = \{ [0], [1], [2], [3], [4], [5] \} = \{ [0], [1], [3], [5] \}.$

the function d' is well-defined.

 Define a DFA called the quotient machine M/≈ = <Q',S, d',s',F'> where

```
o Q'=Q/≈; s'=[s]; F'={[p] | p ∈ F}; and o d'([p],a)=[d (p,a)] for all p∈Q and a∈S. But well-defined? Lem 13.5. if p ≈ q then d (p,a) ≈ d (q,a). Hence [p]=[q] \Rightarrow p \approx q \Rightarrow d(p,a) \approx d(q,a) \Rightarrow [d (p,a)] = [d (q,a)] Pf: By def. [d (p,a)] = [d(q,a)] iff d(p,a) \approx d (q,a) iff \forall y \in S^* D(d (p,a),y) \in F \Leftrightarrow D(d (q,a),y) \in F iff \forall y \in S^* D(p,ay) \in F \Leftrightarrow D(q,ay) \in F if p \approx q.
```

Lemma 13.6. $p \in F$ iff $[p] \in F'$.

pf: => : trival.

<=: need to show that if $q \approx p$ and $p \in F$, then $q \in F$.

But this is trivial since $p = D(p,e) \in F$ iff $D(q,e) = q \in F$

Properties of the quotient machine.

```
Lemma 13.7: \forall x \in S^*, D'([p],x) = [D(p,x)].
Pf: By induction on |x|.
Basis x = e: D'([p], e] = [p] = [D(p, e)].
Ind. step: Assume D'([p],x) = [D(p,x)] and let a \in S.
D'([p],xa) = d'(D'(p,x),a) = d'([D(p,x)],a) --- ind. hyp.
 =[d(D(p,x),a)] -- def. of d'
  = [D (p,xa)]. -- def. of D.
Theorem 13.8: L(M/\approx) = L(M).
Pf: \forall x \in S^*,
x \in L(M/\approx) iff D'(s',x) \in F'
iff D'([s],x) \in F' iff [D(s,x)] \in F' --- lem 13.7
iff D (s,x) \in F --- lem 13.6
iff x \in L(M).
```

M/≈ need not be merged further

• Theorem: ((M/≈) / ≈) = M/≈

Pf: Denote the second \approx by \sim . I.e.

$$[p] \sim [q] \text{ iff } \forall x \in S^*, D'([p],x) \in F' \Leftrightarrow D'([q],x) \in F'$$

```
Now  [p] \sim [q]  iff \forall x \in S^*, D'([p],x) \in F' \Leftrightarrow D'([q],x) \in F' -- def.of \sim  iff \forall x \in S^*, [D(p,x)] \in F' \Leftrightarrow [D(q,x)] \in F' -- lem 13.7  iff \forall x \in S^*, D(p,x) \in F \Leftrightarrow D(q,x) \in F -- lem 13.6  iff p \approx q -- def of \approx iff [p] = [q] -- property of equivalence \approx
```

A minimization algorithm

 Write down a table of all pairs {p,q}, initially unmarked.

- 2. mark $\{p,q\}$ if $p \in F$ and $q \notin F$ or vice versa. q
- 3. Repeat until no additional pairs marked:
- 3.1 if \exists unmarked pair $\{p,q\}$ s.t. $\{d(p,q), d(q,a)\}$ is marked for some $a \in S$, then mark $\{p,q\}$.
- 4. When done, $p \approx q$ iff $\{p,q\}$ is not marked.
- Let M_k ($k \ge 0$) be the set of pairs marked after the k-th iteration of step 3. [and M_0 is the set of pairs before step 3.]
- Notes: (1) $M = U_{k \ge 0} M_k$ is the final set of pairs marked by the alg. (2) The algorithm must terminate since there are totally only C(n,2) pairs and each iteration of step 3 must mark at least one pair for it to not terminate..

An Example:

• The DFA: (Ex 13.2)

	а	b
>0	1	2
1F	3	4
2F	4	3
3	5	5
4	5	5
5F	5	5

Initial Table

1	-				
2	-	-			
3	-	-	-		
4	-	-	-	-	
5	-	-	-	-	-
	0	1	2	3	4

After step 2 (M_0)

1	M				
2	M	-			
3	-	M	M		
4	-	М	М	-	
5	M	-	-	M	M
	0	1	2	3	4

After first pass of step 3 (M₁)

1	M				
2	M	-			
3	-	M	M		
4	-	M	М	-	
5	М	M	M	M	M
	0	1	2	3	4

2nd pass of step 3. $(M_2 \& M_3)$

• The result : $1 \approx 2$ and $3 \approx 4$.

1	M				
2	M	-			
3	M2	M	М		
4	M2	M	M	-	
5	M	M1	M1	M	M
	0	1	2	3	4

Correctness of the minimization algorithm

```
Let M_k ( k \ge 0 ) be the set of pairs marked after the k-th itration of step 3.
            [ and M_0 is the set of pairs befer step 3.]
 Lemma: \{p,q\} \in M_k \text{ iff } \exists x \in S^* \text{ of length } \leq k \text{ s.t. } D(p,x) \in F \text{ and } D(q,x) \notin F \text{ or } S \in S^* \text{ of length } S \in S^* \text{ or } S \in S^* \text
            vice versa,
Pf: By ind. on k. Basis k = 0. trivial.
    Ind. step: \exists x \in S^* of length \leq k+1 s.t. D(p,x) \in F \Leftrightarrow D(q,x) \notin F,
   iff \exists y \in S^* of length \leq k s.t. D(p,y) \in F \Leftrightarrow D(q,y) \notin F, or
                      \exists ay \in S* of length \leq k+1 s.t. D(d(p,a),y) \in F \Leftrightarrow D(d(q,a),y) \notin F,
    iff \{p, q\} \in M_k or \{d(p,a), d(q,a)\} \in M_k for some a \in S.
   iff \{p,q\} \in M_{k+1}.
Theorem 14.3: The pair \{p,q\} is marked by the algorithm iff not(p \approx q) (i.e., \exists
           x \in S^* s.t. D(p,x) \in F \Leftrightarrow D(q,x) \notin F
 Pf: not(p \approx q) iff \exists x \in S^* s.t. D (p,x) \in F \Leftrightarrow D (q,x) \notin F
       iff \{p,q\} \in M_k for some k \ge 0
       iff \{p,q\} \in M = U_{k>0}M_k.
```