DFA state minimization

(LECTURE 7)

Introduction

- Inaccessible states
- How to find all accessible states
- Minimization process

Motivations

Problems:

1. Given a DFA M with k states, is it possible to find an equivalent DFA M' (I.e., $L(M)=L\left(M^{\prime}\right)$) with state number fewer than k ?
2. Given a regular language A, how to find a machine with minimum number of states ?
Ex: $A=L\left((a+b)^{*} a b a(a+b)^{*}\right)$ can be accepted by the following NFA:
By applying the subset construction, we can construct a DFA M2 with $2^{4}=16$ states,
 of which only 6 are accessible from the initial state $\{s\}$.

Inaccessible states

- A state $p \in Q$ is said to be inaccessible (or unreachable) [from the initial state] if there exists no string x in ${ }^{*}$ s.t.

$$
\left.(s, x)=p \text { (l.e., } p \notin\left\{q \mid \exists x \in{ }^{*}, \quad(s, x)=q\right\} .\right)
$$

Theorem: Removing inaccessible states from a machine M does not affect the language it accepts.
Pf: $M=<Q$, , $s, F>:$ a DFA; p : an inaccessible state Let $M^{\prime}=<Q \backslash\{p\}, \quad, \quad, s, F \backslash\{p\}>$ be the DFA M with p removed. Where ${ }^{\prime}:(Q \backslash\{p\}) x \rightarrow Q \backslash\{p\}$ is defined by $'(q, a)=r$ if $\quad(q, a)=r$ and $q, r \in Q \backslash\{p\}$.

For M and M ' it can be proved by induction on x that for all x in $*, \quad(s, x)='(s, x)$.
Hence for all $x \in *, x \in L(M)$ iff $\quad(s, x)=q \in F$ iff $\quad(s, x)=q \in F \backslash\{p\}$ iff $x \in L\left(M^{\prime}\right)$.

Inaccessible states are redundant

- M : any DFA with n inaccessible states $p_{1}, p_{2}, \ldots, p_{n}$.

Let $M_{1}, M_{2}, . ., M_{n+1}$ are DFAs s.t. DFA M_{i+1} is constructed from M_{i} by removing p_{i} from M_{i}. I.e.,
$M-r m\left(p_{1}\right)->M_{1}-r m\left(p_{2}\right)->M_{2}-\ldots M_{n}-r m\left(p_{n}\right)->M_{n}$
By previous lemma: $L(M)=L\left(M_{1}\right)=\ldots=L\left(M_{n}\right)$ and
M_{n} has no inaccessible states.

- Conclusion: Removing all inaccessible sates simultaneously from a DFA will not affect the language it accepts.
- In fact the conclusion holds for all NFAs we well. Pf: left as an exercise.
- Problem: Given a DFA (or NFA), how to find all inaccessible states ?

How to find all accessible states

- A state is said to be accessible if it is not inaccessible. Note: the set of accessible states $A(M)$ of a NFA M is
$\left\{q \mid \quad x \in{ }^{*}, q \in(S, x)\right\}$
and hence can be defined by induction.
- Let A_{k} be the set of states accessible from initial states of M by at most k steps of transitions.
I.e., $A_{k}=\{q \mid \quad x \in *$ with $|x| \leq k$ and $q \in \quad(S, x)\}$
- What is the relationship $b / t A(M)$ and $A_{k} s$?
sol: $A(M)=U_{k \geq 0} A_{k}$. Moreover $A_{k} \subseteq A_{k+1}$
- What is A_{0} and the relationship b/t A_{k} and A_{k+1} ?

Formal definition: $M=<Q$, , $S, F>$: any NFA.

- Basis: Every start state $q \in S$ is accessible. ($A_{0} \subseteq A(M)$)
- Induction: If q is accessible and p in (q, a) for some $a \in$, then p is accessible.
$\left(A_{k+1}=A_{k} \cup\left\{p \mid p \in(q, a)\right.\right.$ for some $q \in A_{k}$ and $\left.a \in.\right)$

An algorithm to find all accessible states:

- REACH(M) \{ //M=<Q, , , S ,F>

1. $A=S$;
$/ / A=A_{0}$
2. $B=(A)-A$;
$/ / B=A_{1}-A_{0}$
3. For $k=0$ to $|Q|$ do $\left\{/ / A=A_{k} ; B=A_{K+1}-A_{k}\right.$
4. $A=A \cup B$; $/ / A=A_{K+1}$
$B=(B)-A ; / / B=(B)-A=\left(A_{K+1}-A_{k}\right)-A_{K+1}=A_{K+2}-A_{k+1} ;$
if $B=\{ \}$ then break \};
5. Return(A) \}

Function (S) $\left\{\quad / /=U_{p \in S, a \in}, q \in(p, a)\right.$

1. $=\{ \}$;
2. For each q in Q do for each a in do

$$
=\mathrm{U}(\mathrm{q}, \mathrm{a}) ;
$$

3. Return() \}

Minimization process

- Minimization process for a DFA:
- 1. Remove all inaccessible states
- 2. Merge all equivalent states
- What does it mean that two states are equivalent?
- both have the same observable behaviors .i.e.,
- there is no way to distinguish their difference.
- Definition: we say state p and q are distinguishable if there exists a string $x \in{ }^{\text {* }}$ s.t. $(\quad(p, x) \in F \Leftrightarrow \quad(q, x) \notin F)$.
- If there is no such string, i.e. $\forall x \in{ }^{*}((p, x) \in F \Leftrightarrow(q, x) \in F)$, we say p and q are equivalent (or indistinguishable).
- Example[13.2]: (next slide)
- state 3 and 4 are equivalent.
- States 1 and 2 are equivalent.
- Equivalents sates can be merged to form a simpler machine.

Example 13.2:

Example 13.2: Witness for states that are distinguishable

1. States $\mathrm{b} / \mathrm{t}\{0,3,4\}$ and $\{1,2,5\}$ can be distinguishsed by the empt y string .
2. States $\mathrm{b} / \mathrm{t}\{1,2\}$ and $\{5\}$ can be distinguished by a or b .
3. States $\mathrm{b} / \mathrm{t}\{0\}$ and $\{3,4\}$ can be distinguished by aa,ab, ba or bb.
4. There is no way to distinguish $\mathrm{b} / \mathrm{t} 1$ and 2 , and $\mathrm{b} / \mathrm{t} 3$ and 4 .

Quotient Construction

- $\mathrm{M}=(\mathrm{Q}, ~, ~, ~ s, ~ F): ~ a ~ D F A . ~$
- \approx : a relation on Q defined by:

$$
p \approx q<\Rightarrow \forall x \in * \quad(p, x) \in F \text { iff } \quad(q, x) \in F
$$

- Property: \approx is an equivalence (i.e., reflexive, symmetric and transitive) relation.
- Hence it partitions Q into equivalence classes :
$-[p]=_{\text {def }}\{q \in Q \mid p \approx q\}$ for $p \in Q$.
- $Q / \approx={ }_{\text {def }}\{[p] \mid p \in Q\}$ is the quotient set.
- Every $p \in Q$ belongs to exactly one class (which is $[p]$)
$0 \quad p \approx q$ iff $[p]=[q] / /$ why? since $p \approx q$ implies $p \approx r$ iff $q \approx r$.
- Ex: From Ex 13.2 , we have $0,1 \approx 2,3 \approx 4,5$.
$=>[0]=\{0\},[1]=\{1,2\},[2]=\{1,2\},[3]=\{3,4\},[4]=\{3,4\}$ and
$\circ[5]=\{5\}$. As a result, $[1]=[2]=\{1,2\},[3]=[4]=\{3,4\}$ and
$\circ \mathrm{Q} / \approx=\{\{0\},\{1,2\},\{3,4\},\{5\}\}=\{[0],[1],[2],[3],[4],[5]\}=\{[0],[1],[3],[5]\}$.

the function ' is well-defined.

- Define a DFA called the quotient machine $\mathrm{M} / \approx=<$ Q', , ',s', F'> where
- $Q^{\prime}=\mathrm{Q} / \sim ; s^{\prime}=[\mathrm{s}] ; \mathrm{F}^{\prime}=\{[\mathrm{p}] \mid \mathrm{p} \in \mathrm{F}\}$; and
${ }^{\prime}([\mathrm{p}], \mathrm{a})=[\quad(\mathrm{p}, \mathrm{a})]$ for all $\mathrm{p} \in \mathrm{Q}$ and $\mathrm{a} \in$. But well-defined?
Lem 13.5. if $\mathrm{p} \approx \mathrm{q}$ then $(\mathrm{p}, \mathrm{a}) \approx(\mathrm{q}, \mathrm{a})$.
Hence $[p]=[q] \Rightarrow p \approx q \Rightarrow(p, a) \approx(q, a) \Rightarrow[(p, a)]=[\quad(q, a)]$
Pf: By def. $[(p, a)]=[(q, a)]$ iff $(p, a) \approx(q, a)$
iff $\forall y \in \epsilon^{*} \quad(\quad(p, a), y) \in F \Leftrightarrow \quad(\quad(q, a), y) \in F$
iff $\forall y \in$ * $\quad(p, a y) \in F \Leftrightarrow \quad(q, a y) \in F$
if $p \approx q$.
Lemma 13.6. $p \in F$ iff $[p] \in F$.
pf: => : trival.
$<=:$ need to show that if $q \approx p$ and $p \in F$, then $q \in F$.
But this is trivial since $p=(p,) \in F$ iff $\quad(q)=,q \in F$

Properties of the quotient machine.

Lemma 13.7: $\forall x \in *,{ }^{\prime}([p], x)=[(p, x)]$.
Pf: By induction on $|x|$.
Basis $x=: \quad$: $[p], \quad]=[p]=[(p)$,$] .$
Ind. step: Assume $\quad \prime([p], x)=[(p, x)]$ and let $a \in$.

$$
\begin{aligned}
& \prime([p], x a)={ }^{\prime}\left({ }^{\prime}(p, x), a\right)={ }^{\prime}([(p, x)], a)--- \text { ind. hyp. } \\
& =[((p, x), a)] \quad-- \text { def. of } \\
& =[(p, x a)] . \quad-- \text { def. of } .
\end{aligned}
$$

Theorem 13.8: $L(M / \approx)=L(M)$.
Pf: $\forall x \in$,
$x \in L(M / \approx)$ iff \quad ' $\left(s^{\prime}, x\right) \in F^{\prime}$
iff '([s],x) \in F' iff $[(s, x)] \in F^{\prime}$--- lem 13.7
iff $(s, x) \in F \quad$--- lem 13.6
iff $x \in L(M)$.

$\mathrm{M} /$ = need not be merged further

- Theorem: $((\mathrm{M} / \approx) / \approx)=\mathrm{M} / \approx$

Pf: Denote the second \approx by ~. I.e. $[p] \sim[q]$ iff $\forall x \in{ }^{*}, \quad{ }^{\prime}([p], x) \in F^{\prime} \Leftrightarrow{ }^{\prime}([q], x) \in F^{\prime}$

Now
[p] ~ [q]
iff $\forall x \in *, \quad \prime([p], x) \in F^{\prime} \Leftrightarrow \quad \prime([q], x) \in F^{\prime}--$ def.of iff $\forall x \in *,[(p, x)] \in F^{\prime} \Leftrightarrow[(q, x)] \in F^{\prime}$-- lem 13.7 iff $\forall x \in *, \quad(p, x) \in F \Leftrightarrow \quad(q, x) \in F \quad$-- lem 13.6 iff $p \approx q$-- def of \approx
iff $[p]=[q]$-- property of equivalence \approx

A minimization algorithm

1. Write down a table of all pairs $\{p, q\}$, initially unmarked.

2. mark $\{p, q\}$ if $p \in F$ and $q \notin F$ or vice versa. q
3. Repeat until no additional pairs marked:
3.1 if \exists unmarked pair $\{p, q\}$ s.t. $\{(p, q), \quad(q, a)\}$ is marked for some $a \in$, then mark $\{p, q\}$.
4. When done, $p \approx q$ iff $\{p, q\}$ is not marked.

Let $M_{k}(k \geq 0)$ be the set of pairs marked after the k-th iteration of step 3. [and M_{0} is the set of pairs before step 3.]
Notes: (1) $M=U_{k \geq 0} M_{k}$ is the final set of pairs marked by the alg. (2) The algorithm must terminate since there are totally only $\mathrm{C}(\mathrm{n}, 2)$ pairs and each iteration of step 3 must mark at least one pair for it to not terminate..

An Example:

The DFA: (Ex 13.2)

	a	6
>0	1	2
$1 \mathcal{F}$	3	4
$2 \mathcal{F}$	4	3
3	5	5
4	5	5
$5 \mathcal{F}$	5	5

Initial Table

1	-				
2	-	-			
3	-	-	-		
4	-	-	-	-	
5	0	-	-	-	
				2	3

After step $2\left(\mathrm{M}_{0}\right)$

1	M				
2	M	-			
3	-	M	M		
4	-	M	M	-	
5	M	-	-	M	M
	0	1	2	3	4

After first pass of step $3\left(\mathrm{M}_{1}\right)$

1	M				
2	M	-			
3	-	M	M		
4	-	M	M	-	
5	M	M	M	M	M
	0	1	2	3	4

2nd pass of step 3. $\left(\mathrm{M}_{2} \& \mathrm{M}_{3}\right)$

- The result : $1 \approx 2$ and $3 \approx 4$.

$\mathbf{1}$	M				
$\mathbf{2}$	M	-			
3	M12	M	M		
4	M12	M	M	-	
$\mathbf{5}$	M	M1	M1	M	M
	0	$\mathbf{1}$	2	3	4

Correctness of the minimization algorithm

Let $M_{k}(k \geq 0)$ be the set of pairs marked after the k-th itration of step 3 .
[and M_{0} is the set of pairs befer step 3.]

Lemma:

vice versa
Pf: By ind. on k. Basis $k=0$. trivial.
Ind. step: $\exists x \in *$ of length $\leq k+1$ s.t. $(p, x) \in F \Leftrightarrow(q, x) \notin F$, iff $\exists y \in$ * of length $\leq k$ s.t. $\quad(p, y) \in F \Leftrightarrow(q, y) \notin F$, or $\exists a y \in \quad *$ of length $\leq k+1$ s.t. $\quad(\quad(p, a), y) \in F \Leftrightarrow((q, a), y) \notin F$,
iff $\{p, q\} \in M_{k}$ or $\{(p, a), \quad(q, a)\} \in M_{k}$ for some $a \in$.
iff $\{p, q\} \in M_{k+1}$.
Theorem 14.3: The pair $\{p, q\}$ is marked by the algorithm iff $\operatorname{not}(p \approx q)$ (i.e., \exists
Pf: $\operatorname{not}(p \approx q)$ iff $\exists x \in *$ s.t. $\quad(p, x) \in F \Leftrightarrow(q, x) \notin F$
iff $\{p, q\} \in M_{k}$ for some $k \geq 0$
iff $\{p, q\} \in M=U_{k \geq 0} M_{k}$.

